· · · · · · · · · · · · · · · · · · ·	· · ·		
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	Composing Codensity	Bisimulations
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	Mayuko Kori ^{1,2} , Kazuki Waranabe, Junia	an Rot ³ , Shin-ya Katsumata
•••	• •	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
		1. National Institute of Informatics	
	• •	2. The Graduate University for Advanced Studies (SOKEN	JÐAI)
		3. Radboud University	
		T. Kyoto Sangyo University	
	0 0		
	• •		
			· · · · · · · · · · · · · · · · · · ·
	• •		
	• •		

Coalgebraic bisimulation [Hermidale Jacobs, Inf. Comput. 198]	
$FGE \xrightarrow{P \to FP} Coolg(F)$ $fibrotion P \xrightarrow{V} sportial structure. FG \xrightarrow{V} FX$ $FGE \xrightarrow{X \to FX} Coolg(F)$ $FG \xrightarrow{P} \xrightarrow{Y \to FX} Coolg(F)$	(p)
<u>e.g.</u> - Standard bisimulation. on a Kripke frame S	
pG ERel <u>R</u> <u>P</u> PG Set <u>S</u> S	S (14'3')ER (14'3')ER

<u>Composing bisimulations via lifting of distributile lan</u> Bonchi+, Act. info. [17] Compose distinulations by liftings $\hat{F}, T, \hat{\lambda}$ of $F, T, \hat{\lambda}$ along p. [Coalg(F)] \xrightarrow{T} Coalg(F) by $F : \mathbb{B} \to \mathbb{B}, T : \mathbb{B} \to \mathbb{B},$ [Coalg(F)] \xrightarrow{T} Coalg(F)] distributive law $\hat{\lambda} : TF^{V} \Rightarrow FT$ (Compose Systems) uhere $\dot{T}_{\lambda} = \lambda \circ \dot{T}(-)$ $T_{\lambda} = \lambda \circ T(-)$ Compose systems e.g. product composition of standard bisimulations. Tr ... product of Kripke Frames. S1. S2 Ti ... product of Disimulations RI, R2 Prop. S.R. E Coalg (F)S. ⇒ Tr (R, R2) ∈ Coolg (È) Tr (S, S2) Disim on Tr (S, S2) $R_2 \in Coalg (F)_{5_2}$

Overview of our work Coalg(F) The Coalg(F)] given by liftings F.T.N. defined by a suf. Cond. Codensity liftings. Coolg(F)→ Coolg(F)] given by F.T. X We adopt { Codensity lifting for È [Sprungert. JLC'21] generalized Codensity lifting for T new! and provide a sufficient condition of liftability of λ that gives various composition of bisimulations. Results are based on 2-categorical extension of Beohart's decomposition. [Beohar, Gube, König, Messing, Forster, Schröder, Wild, STACS'24]

<u>Comparison to related works.</u> 1. Abstract GSOS rules. [Turile Plottin, LICS'97] et al. Not directly apply to similarity or behavioural metric 2. Liftability of λ in [Bonchit. Act. info. 17] [88, Bonchi+'17] [\$6, Bonchi+'17] ours. Varions Sweet spot! Various Rel - Set fibration P Pel(F), Rfl, Sym,... all distributhe laws lift FT Various Codensity liftings proof of liftability by Sufficient Cond. Case - by - Case

Outline
1. Codensity lifting. - Ordinary one. [F.C) GE
$FGB = For System's behavior$ $- Generalizing \\ Codensity lifting. \qquad \qquad$
2. Sufficient condition of liftability of distributive laws. $[T,v]^{\mathcal{D}}([F,\tau]^{\mathcal{D}}) \stackrel{2}{\Rightarrow} [F,\tau]^{\mathcal{D}}[T,v]^{\mathcal{D}}$ \vdots $= T^{V} \stackrel{2}{\rightarrow} E^{T}$

Codensity (ifting [F.C]¹² [Sprunger +, JLC'21] truth value Def. [E VEE Given Clath P FGC FR The modality $[F, T]^{SP}$: $E \rightarrow E$ is the largest lifting of F s.t. T is liftable. [FT] GE FT] D T FGC FD I Style It can be written as $[F, T]^{\mathbb{D}}(P) = \bigwedge (T \circ FF)^* \mathfrak{D}$ RepE(P.M) e.g. Lifting for standard bisim, Kantonovich methic,...

<u>Outline</u>
1. Codensity lifting.
- Generalizing Codensity lifting. PN [T] E PN [P]
B' For Composing coalg cattiers
2. Sufficient condition of liftability of distributive laws, $[T,v]^{\mathbb{R}}([F,\tau]^{\mathbb{N}} \stackrel{?}{\Rightarrow} [F,\tau]^{\mathbb{R}}[T,v]^{\mathbb{R}}$
$\tau F^{\nu} \stackrel{\checkmark}{\Rightarrow} F\tau$

Liftability of d'stributive law λ generalized ordinary one ordinary Consider $\Sigma \in E_{\Sigma}$, $E \in E_{\Sigma}$, $E^{N} \subseteq E_{\Sigma}$ $\mathcal{T}: F \mathcal{D} \to \mathcal{D} \twoheadrightarrow \mathcal{B},$ P^N $\mathcal{T}: \mathcal{T}(\Omega, \dots, \Omega) \to \Omega \mathbb{A} \mathbb{B},$ BN - T B2F We tackle the problem: when $\lambda: TF \Rightarrow FT$ is liftable to $\chi : [T, \sigma]^{\mathcal{D}} ([F, \tau]^{\mathcal{D}}) \Rightarrow [F, \tau]^{\mathcal{D}} [\tau, \sigma]^{\mathcal{D}}?$ Coalg([F.T]) [T.T]; Coalg([F.T]) It gives Coalg(F) Th Coalg(F) Compose systems

Our sufficient Condition How do we lift λ to $[T, \tau]^{\mathfrak{D}}([F, \tau]^{\mathfrak{D}})^{\mathcal{N}} \Rightarrow [F, \tau]^{\mathfrak{D}}[T, \tau]^{\mathfrak{D}}$? $[T, 4]^{\mathcal{D}}([F, C]^{\mathcal{D}})^{\mathcal{V}}$ $= [T, T]^{m} [F', T']^{m}$ $= R \circ Sp(T, \tau) \cdot L \circ R \cdot Sp(F', T') \circ L$ $\Rightarrow \mathbb{R} \circ Sp(T, \tau) \cdot Sp(F^{\prime}, T^{\prime}) \circ L$ by L-IR $\Rightarrow \mathcal{R} \circ S_{\mathcal{P}}(F, \tau) \circ S_{\mathcal{P}}(\tau, \tau) \circ L$ $(\dot{r}) = [F, \tau]^{\mathcal{D}} [\tau, \tau]^{\mathcal{D}}$ Then $\lambda: TF \Rightarrow FT$ is liftable if (1) and (2) hold. (1) λ is a 2-cell $(T,\tau) \circ (F',\tau') \Rightarrow (F,\tau) \circ (T,\tau)$ in 1/(CAT). (2) The last equality holds. (iff $Sp(T,\tau) \cdot LP$ is approximating to $[F,T]^{P}$ for each P) in the sense of [Komoridat, Llcs'21]

. .	Composition of systems. (Tr)	Composition of bisim. ([T,J	
Standard bisim.	parallel Composition		
Larg. equivalence of det. automata		product i i i i i i i i i i i i i i i i i i i	Cur Sufficient
Bisimilarity pseudometric for det. Automata.			Cond.
Similarity «			
Bisimulation Metric for MDP		given by T(a,b) = 1-(1-a)(1-b)	Z unsolved if it Satisfies

Conclusions Coalg([F,T]) [T,T] > Coalg([F,T]) Coalg([F,T]) [Coalg([F,T]) Coalg(F) Coalg(F) Coalg(F) Tx > Coalg(F) - Generalizing codensity liftings for [T.J] : EN-SE - <u>A sufficient condition</u> of liftability $\int Commutation b/w \ t \ and \ v.$ (IF, t]) \Rightarrow [F, t] $[T, v]^{\Omega}$ $TF^{N} \xrightarrow{\lambda} FT$ - (omitted in this talk) A composition of codensity games via modalities. It preserves invariants under our sufficient condition.

```
Appendix
```

Example: Composing bisimulations for Kripke frames
Def A bisimulation on a Kripke frame S: S→PS is R⊆S×S s.t.
$ \begin{pmatrix} \chi \longrightarrow \chi' & \chi \longrightarrow \chi' \\ \vdots P & \vdots P \\ \vdots P & \vdots P \\ y \longrightarrow y' \end{pmatrix} and \begin{pmatrix} \chi & \chi \longrightarrow \chi' \\ \vdots P & \Rightarrow \chi' \\ y \longrightarrow \chi' & y \end{pmatrix} $
Prop. R, and R2 are bisim. on S, and S2, respectively. \Rightarrow R, x R2 is a bisim. on the product of S, and S2.
Coalgebraic reformulation
- Fripke frames Si, S₂ ←> Coalgebras Ci, C₂ Compose by a product Compose by a distributive law λ
- Bisimulations R. R2 \leftrightarrow liftings of Ci. C2 along a fibration. Compose by a product Compose by a lifting of λ . Rix R2 Our focus

<u>Composing Coalgebras via distributive law</u>	· · · · ·
Given functors $F: B \rightarrow B, T: B^{N} \rightarrow B$,	
a distributive law $\lambda: TF^N \Rightarrow FT$,	· · · · ·
we have T_{X} : Coolg $(F)^{N} \longrightarrow Coolg (F)$	· · · · ·
$\begin{cases} X_{i} \xrightarrow{C_{i}} FX_{i} \\ \hline \\ Component System \end{cases} \xrightarrow{T_{x}} TX \xrightarrow{T_{x}} TX \xrightarrow{T_{x}} F(TX) \\ \hline \\ Composite System \end{cases}$	· · · · ·
e.g. product of Kripke frames {Ci: Xi -> JXi }i=1,2	· · · · ·
$T := X : Set^2 \rightarrow Set. \lambda_{X,Y}(A,B) := \{(a,b) \mid a \in A, b \in B\}$	· · · · ·
Then $T_{X_{1}}(C_{1},C_{2}): X_{1} \times X_{2} \longrightarrow \mathcal{P}(X_{1} \times X_{2})$ $a. b \longmapsto \mathcal{E}(a',b') a' \in C, a. b' \in C_{2} b$	· · · · ·
How do we construct a bisimulation on Tr (E)? Composite system	3

Beohar et al.'s decomposition, Fibrationally [Beohart. STACS'#] decomposition of [F.I]ⁿ as being sandwiched b/w adjoints. $\underline{\mathsf{Thm}}. [F, \tau]^{\mathbb{R}} = \mathbb{R}^{\mathbb{R},\mathbb{R}} \circ \operatorname{Sp}(F, \tau) \circ [\mathbb{L}^{\mathbb{R},\mathbb{R}}] \left(= \bigwedge ((\tau \circ F \mathbb{R})^{*} \mathbb{R}) \right)$ $\bigwedge (-)^{*} \mathbb{R} \quad \tau \circ F(-) \quad \operatorname{Bep}(-,\mathbb{R}) \left(= \mathbb{R}^{\mathbb{R}} (-,\mathbb{R})^{*} \mathbb{R} \right)$ where $\mathbb{H} \xrightarrow{\mathbb{P}^{n}} \mathbb{E}(-, \mathcal{R})^{\circ P}$ $(\overset{j}{\xrightarrow{}} \mathcal{P}(\mathcal{B}, \mathcal{R}) \longrightarrow \mathbb{P}^{\circ P}$ $(\overset{j}{\xrightarrow{}} \mathcal{P}(\mathcal{B}, \mathcal{R}) \longrightarrow \mathbb{P}^{\circ P}$ Sibred lifting of F $S_{p}(B, \Omega) \ge S_{p}(F, \tau) (S \subseteq B(X, \Omega))$ $|C|_{A+n} := \{ \mathcal{T} \circ \mathcal{F} \in | \mathcal{E} \in S \}$ -fib. $\subseteq \mathbb{B}(\mathcal{F} X, \Omega)$ BZF lessential part R^{r.R} is the right adjoint of L^{P,R} given by F.C

Codensity liftings of T. (esp. product functors.)
Example Pseudo-metric lifting by a modality T . $\begin{array}{cccc} PMet & Euclidean distance. \\ PMet & D := dT \in [PMet Could in the could interval in the could in the could in the could interval $
Prop. $[X, \nabla J^{d_{I}}(d_{X}, d_{Y}) ((I, Y), (I, Y')) = \mathcal{T}(d_{X}(I, I'), d_{Y}(Y, Y'))$ if $\begin{cases} \mathcal{T} \text{ is monotore,} \\ \mathcal{T}(0, 0) = 0, \\ \mathcal{T}(a, b) - \mathcal{T}(c, d) \leq \mathcal{T}([a-c], [b-d]) & \text{for each } a, b, c, d \in [0, 1] \end{cases}$
e.g. $T(a,b) := \frac{a+b}{2}$, max (a,b) , $[-(l-a)(l-b)$ They give various non-trivial [iftings. [5]